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Three linear methods for constructing a rational S matrix from phase shifts are presented 
and compared. Applications to ‘S, neutron-proton elastic scattering data and to potential 
model problems show them to be efficient and in some cases superior to the Newton-Rap&on 
(NR) and Levenberg-Marquardt (LM) methods. The relative power of the three methods is 
seen to depend upon the smoothness of the data. One exacting test we have made is to take as 
data some phase shifts computed to high accuracy from a spin-averaged NN potential of 
Malfliet and Tjon (MTV). We truncate the MTV potential at different ranges K. The known 
analytic structure resulting from the truncation, including Gamow state poles, is stably 
reproduced. One method, which we designate as KKH, is superior in this problem with 
smooth data. In another class of problems, when even small random noise is injected into our 
neutron-proton data, another method, which we label HY, is superior. In this case, LM, NR, 
and KKH are sometimes completely ineffective. Slight improvements are sometimes made 
with NR or LM iterations after the other methods have achieved their optimum parameter 
values. Therefore, we recommend that all live methods be programmed together as different 
options. Such a program should contain a number of important rational function checks. 
b 1988 Academic Press, Inc. 

1. INTRODUCTION 

The S matrix is a fundamental construct in scattering theory. In this paper we 
present and compare stratagems for the formation of an approximate S matrix that 
contains a rational function of momentum, from experimentally or t~eore~ical~~ 
derived elastic phase shifts. The need for such strategems becomes clear in the con- 
text of current scattering theory as applied to nuclear physics. For a given angular 
momentum, bound states, antibound states, and resonances appear in the S matrix 
as simple poles [l J. In one case of practical interest, which we shall refer to as 
case (a), the S matrix is approximated as a rational function of k. Such an 
approximation has been successfully used to construct NN potentials [2-S]. 
Inverse scattering theory is easily applied in case (a) to produce separable [5,6] or 
local [24] potentials. In another case which we call case (b), the S matrix is 
expressed as S(k) = exp[ -2ikR] D(k), where D(k) is a function in k with an 
infinite number of poles and zeros. For a local potential which is of c 
port, the latter case is known to be a more accurate representation of 
and R is then the range beyond which the potential vanishes [7]. The ability to 
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aPProXimate S(k) or exp[2ikR] S(k) as a rational function of the momentum k in 
the center of the momentum system, characterized entirely in terms of zeros and 
poles, is therefore useful. 

In nuclear physics, recent work has shown that nucleon-nucleon (NN) inter- 
actions representable as sums of Yukawas are well approximated by rational ,‘$ 
matrices [8] and that a variety of nuclear systems can be effectively represented in 
this way [9]. Poles of the S matrix can be computed accurately from precisely 
known phase shift data [S]. Recently, Gamow state poles have been accurately 
located in this way [lo] for the Reid soft core (RSC) NN IS0 potential [ll]. 
Locating those poles is a useful step in the application of one of the more powerful 
separable expansion techniques developed recently [ 12, 131. Finally, a current 
nuclear physics problem, the unequivocal identification of a dibaryon resonance in 
medium energy NN scattering [14], would be simplified if the S matrix for the 
relevant states were well approximated by a rational function. All the problems we 
have mentioned can be reduced to a minimization of x2. 

Here, we investigate three newer alternative methods for minimizing x2. We 
compare them with two standard methods, Newton-Raphson (NR) [15,16] and 
Levenberg-Marquardt (LM) [16-181. The NR method requires a tedious 
evaluation of the derivative matrix M, = d2X2/daiaaj at each iteration point. This 
makes NR relatively slow, but it continues to be a method of choice in some 
problems such as calculations of polynomial roots when the derivatives are simple 
to evaluate, because of good convergence properties [ 151. Since LM is especially 
tailored to minimizing a sum of squares and only requires knowledge of the 
Jacobian matrix of x2, the LM iterations are fast. Here we use an even faster version 
of LM that approximates derivatives using finite differences [ 16, 181. However, it is 
found that the convergence rate per step of LM is slow, and that both LM and NR 
frequently do not converge at all. Newton method variants are of continuing 
importance in computational physics [19,20]; in this case, comparisons with the 
Newton-Raphson method provide important benchmarks. 

Typically, the analysis of elastic scattering data results in numerical tables of 
phase shifts for real non-negative k. The partial wave S matrix for a central inter- 
action, S,(k) = exp[2id,(k)], can be continued to the complex k plane by the ansatz 
(a) that it be rational or (b) that it have a structure exp[ -2ikR] D(k), where D(k) 
is rational. For case (a), transforming phase shifts into values of the scattering 
function F,(k) = k “+‘cot[S,(k)] is a convenient procedure. Unlike the phase shift 
6,(k), the function F,(k) has a structure of poles and zeros that makes it ideally 
representable as rational function. The function F[(k) is even [ 11. Hence, the 
technical problem can be posed in terms of the variable x = k2: find a meromorphic 
continuation of a discrete function E;(xj), where j= 1, 2, . . . . iV. 

Hereafter, we shall restrict our analysis to the s wave. Then case (b) is charac- 
terized by the equation 
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since G is also even, being given by 

G(x) = G(k’) = k cot(b,(k) + kR). (21 

In a formal sense, this is the general case, since case (a) can be recovered by simply 
setting R = 0 and interpreting G(x) as the scattering function previously designated 
by F,(x). Then, generally, the discrete function G(x,) is to be represented as a 
rational function. 

Such problems as we describe here have been characterized by Miller as ill 
posed 11211. Flowever, with sufficiently high quality data and proper constraints on 
the assumed rational form of G(x) to assure vanishing phase shifts at high energies, 
there has been success in reproducing important features of models of the FJN 
interaction [Z, 43. 

The meromorphic continuation of G(x) can be characterized in statistical te 
Minimize the functional 

x2 = 2 [G,(xj) - G,(xj, a)]“/02(xi). (31 
j=l 

Given a set of data (G,(xj)}, associated standard errors {dc(xj)), and a theoretical 
function G,(x, a) depending upon a parameter vector a, the value a0 which makes 
x2 an absolute minimum is sought. A special case is the least-squares problem, in 
which o,(xj) = 1. Alternatively, standard errors { as(xj)) for the phase shifts can be 
assumed at first, which are transformed into the set {rrG(xj) j. For the 
analysis, it is also assumed that 

The right-hand side is often written simply as [L/M], where L and 
degrees of the polynomials PL(x) and Q,(x), whase coefficients are the 
to be varied: 

P,(x)=a,+a,x+...~a,x~ 

Q,(x) = 1-t b,x + . . . + b,&+? 
(5) 

Two classes of problems need to be considered. We designate as class I a 
in which the data are smooth and the standard errors uniformly small. Often, in a 
class I problem, a simple analytic expression G, is used to a~proxirna~g a com- 
plicated analytical expression G,. A contrasting situation occurs when data foxtail 
significant random variability. This is what we designate a class II problem. No one 
method we examine is superior for both classes of problems. 

The context of the present work, then, is to find meromorphic approximations 
for the S matrix whose poles, zeros, and asymptotic behavior have physical 
meaning. Even though smooth functional tits to scatering data provided by inter- 
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polating and smoothing splines are well developed [16,22], they do not satisfy the 
present requirements. This paper addresses the clear need for a comparable state of 
development for general rational functional data fits. 

2. THREE STATISTICAL PADI? APPROXIMANT METHODS 

First we review some older methods. A rational approximant of the type 
described here is related to the Pad& approximant (PA) [23]. Krasnopolsky et 
al. [9] refer to it as a Padt approximant of the third kind. Alternatively, it will be 
called a statistical PA. The standard PA, of the first kind, is possible when a power 
series of the function G,(x) is known. Then the coefficients in PL(x) and Q,(X) are 
simply and uniquely determined upon equating the power series for G,(x) and 
PL(x)/QM(x). Statistical PAS have sometimes been seen to provide a comparable 
quality of fits to PAS of the first kind [S, 241. 

A second kind of PA that has seen some use in the past is the N point PA, one of 
many known generalizations of PAS [23]. It is determined by solving the equations 

Ge(xi) QdXi) = P,(Xi), i= 1, 2, . ..) L+M+l (6) 

for {aj} and (bk). This is useful when data are known to high precision [9], but is 
frequently unstable even then, leading to defective PAS [3]. In a defective PA, 
common or nearly common roots of PL(x) and Q,(x) occur where the PA values 
should be smooth. 

In general, any inappropriate occurrences of zeros or poles are to be regarded as 
defects. They can be anywhere in the complex plane. With careful scrutiny, it is 
usually possible to distinguish between defective poles and zeros and those that are 
not. For example, on mathematical grounds, zeros of PL(x) and Q,(x) that are 
identical to within the computational precision of the root-finding analysis should 
be regarded as defective. However, nearly common zeros of PL(x) and Q,(X) that 
are distinguishable within the computational precision sometimes are known to be 
approximations to cuts and can therefore be genuine [23]. A good example of this 
is seen in some recent calculations of S matrices in the complex k plane [8], in 
which the PA simulation of a cut appropriately approaches the imaginary axis (the 
Yukawa cut) as the cutoff radius R becomes larger [l]. As the identification of PA 
defects is important, and finding roots of polynomials is notoriously ill-con- 
ditioned [15], it is advisable to use extended precision in the procedure used to find 
roots. 

Another mathematical ground for identifying defects is the occurrence of struc- 
ture, such as poles, zeros, or oscillations, where it is known that none exist. For 
example, the phase shift 6,(k) has no infinities in the physical region, where k is real 
and nonnegative. Finally, the physical significance of poles and zeros of a rational S 
matrix makes it possible to reject some otherwise excellent fits: Levinson’s 
theorem [l, 5, 81, which allows one to compute the number of bound states from 
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the difference between the number of poles and zeros of the S matrix in the u 
half plane, must be satisfied. Also, S matrix poles can represent bound st 
antibound states, and resonances, and these features can be checked in the 
in the model being studied. 

The first statistical PA method we present is a special case of a general 
meromorphic continuation of Miller’s [Zl]. It is to minimize the fn~ctional xt: 

j=l 

This does not give an absolute minimum of x *~ Frequently, however, the lit is 
excellent. The equations to be solved are 

a&3aj = 0 j=O,l L > I.., 

aXgab, = 0 k = 1, . . . . M. 
(8) 

These are linear in the L + M+ 1 coefficients of P, and QM. Although non- 
iterative, the Miller method is sometimes useful for providing a start of iterative 
methods. 

The second statistical PA, the KKH algorithm, was introduced by Krasnopo~sky, 
Kukulin, and Horacek [9]. They employed an iteration procedure which starts 
with the solution of Eqs. (8), which we call Pf’) and Qgj. New standard errors are 
now defined: 

~i;"(xJ = G&x~) Q';'(xJ 191 

and Eqs. (8) are solved again. This linear process is iterated, The x2 f~nct~o~a~~ 
defined in terms of the original e-,Jxi), tends to decrease in a small num 
iterations to a minumum value and then increase. The KKI-I procedure gives hig 
weights to points near the poles, the zeros of QJx). 

The third method, used by Hartt [3,4] and discussed by Wartt and Yidana 
called the HY method, is also linear and iterative. The original x2 of Eq. (3) is 
minimized with respect to the {aj> keeping the (bk) fixed. This is obtained as the 
solution of the L + 1 linear equations 

ax2/aaj = 0 j = 0, 1, . ..) L. 

Next the reciprocal function iHe = l/G,(x,)} with reciprocal standard errors 

is used to form the functional 
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which is minimized with respect to the {bi} from the solution of the A4 linear 
equations 

azXgabk = 0, k = 1, 2, . . . . M. (13) 

For each successive iteration, Eqs. (10) are solved and then Eqs. (13) are solved. 
Like the KKH method, the HY method tends to give x2 values which reach a 
minimum in a small number of iterations and then increase. Sometimes the Miller 
method gives good starting values for this iteration procedure, but as seen in the 
examples, it frequently does not. 

3. NUMERICAL CALCULATIONS 

3.1. EXAMPLE 1. Our first example is a class I problem. It is to reconstruct the 
rational function j-r(x) = (3 + 2x)/( 1 + x/2). With the N point PA, we are restricted 
to three points for the three undetermined coefficients. As long as the values of 
fr(xJ used as data are sufficiently different, solution of Eqs. (6) leads to accurate 
[l/l] coefficients. The statistical PAS allow the use of more data and generally 
improve as the number of data points increases. It is advisable to use high precision 
because polynomial roots are routinely calculated in the various PA checks, and 
much precision is lost because of the ill-conditioned nature of the root-finding 
problem. All calculations reported here have employed extended (32-figure) 
precision. There is a wide range of results iff,(x) is calculated at only four values of 
X. With the choice (-2.25, - 1.75, - 1, + l), for example, the Miller method gives 
coefficients with better than 25-figure accuracy and x2 = 10p61, making further 
iterations using the KKH method superfluous. The HY method is ineffective and 
does not converge even after hundreds of iterations, unless the starting values are 
close to the exact ones. As the number of data points off,(x) is increased, the con- 
vergence of the HY method dramatically improves. With just 10 points judiciously 
chosen, the HY method converges to x2 = 10-l’ and ten-figure accuracy after 9 
iterations, starting from a0 = a, = 0 = b, . Again, the Miller method gives essentially 
exact results. It is more realistic to use more data points. Fitting a small number of 
data points can equally well be accomplished by many different low-order PAS and 
hence is an ill-posed problem. 

3.2. EXAMPLE 2. The second example is a classic nuclear scattering problem. It 
is to construct a rational S matrix in the neutron-proton singlet s wave channel. 
The analysis is carried out here using data in the form of phase shifts, according to 
the prescription of case (a) in which R is set equal to zero. In this and the next 
example, smooth and noisy data are considered in succession. Some older 
smoothed phase shifts and associated standard errors are especially easy to use here 
[4, 251. We use 40 data points. Figure 1 shows the curve for our best statistical fit, 
expressed in terms of phase shifts that have been transformed from our [3/2] lit of 
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FIG. 1. Neutron-proton ‘S, phase shifts. Shown are experimental data points (.) [4,25] and curve 
generated from KKH method [3/2] fit of scattering function F(x) = k cot(a). 

the scattering function. The original experimental phase shifts [ZS], obtained by an 
energy-dependent smoothing procedure, are also shown. The curve was o~t~~ed 
using the KKH method, which gave x2 = 0.0356 after 2 iterations, and the 
parameters (rounded off): 

a, = 0.04224044227 fm-’ b, = I.538415449 fm2 

a, = 1.319236280 fm b 2 = -0.5557873921 fm4 

a2 = 1.588550849 fm3 

a3 = 0.09624740411 fm’ 

Fitting such smooth data is a class I problem. The KKH method is slightly better 
here than the HY method, which took five iterations to reach x2 = 0.0359, wit 
identical phase shift curve. The Miller method gave x2 = 0.174, also a good fit, 
provided the start of all the iterative methods for this example. The NR rnet~~ 
gave x2 = 0.0356 after live iterations, while the LM method gave x2 = 0.0357 
iterations. Generally, fits to G(x) of the form [L/M] with M < L are n 
reproduce the correct asymptotic behavior of the phase shifts-they vanish-as k 
approaches infinity, for a finite or a Yukawa-type poten Cdl. 

It is also a class I problem to reconstruct the [3/2] . With the [3/2-j coef- 
ficients given above and the experimental standard errors for 40 data points, t 
Miller method reproduces F(k) with x2 = 10Vs5. The HY, LM, and NR methods, ah 
more complicated and time consuming than the Miller method, have not been 
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tested here. The Miller method also produces good [2/l], [4/3], and [5/4] fits. 
The [4/3] and [5/4] fits are defective and hence are rejected. 

3.3. EXAMPLE 3. The situation changes when some random error is built into 
the phase shift data, throwing the problem into the second class. For a numerical 
experiment, we have folded Gaussian noise consistent with the experimental 
standard errors into the 40 data points, using an IMSL random number generator 
[16]. Figure 2 shows randomly generated phase shift data in the region of largest 
standard errors. For the original data here, we have taken the theoretical phase 
shifts from the [3/2] lit shown in Fig. 1. Two cases are shown, corresponding to 
two different values of the IMSL random number parameter DSEED. At lower 
energies the variability is less, standard errors increasing smoothly with k from 
0.01” to 1.74” [25]. Table I gives the results for convergence comparisons. Here it is 
evident that the HY method displays the best convergence. A second example is 
shown in Table II, where Gaussian noise is introduced corresponding to values of 
cr(.xi) reduced by a factor of 0.5. Comparison of these tables indicates a relative 
improvement of the KKH method when data have smaller statistical variability. 
Note that the NR and LM methods are inferior in both cases, often not converging 
when the Miller method provides the starting values. 

Especially over the lower energies, the noise we have generated perturbs the data 
only slightly; yet, it is not possible to recover the [3/2] order of the original 
theoretical data, either in Table I or Table II, by the x2 fits alone. Some other 

1.5 2.0 

k ( fm-1) 
FIG. 2. Neutron-proton ‘S, phase shifts in region of large standard errors. Shown are experimental 

error bars [25] and phase shifts obtained by perturbing lit shown in Fig. 1 with Gaussian random error. 
Gaussian standard deviation was set equal to standard error. Two cases are shown, corresponding to 
IMSL [ 161 random number parameter DSEED = 1 ( + ), and DSEED = 20 ( 0 ). 
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TABLE I 

Values of x2 for Different Methods of Fitting G(x) with Random Variability in Data 

Methods 

PA DSEED Miller KKH HY NR LM’ 

P/11 1 92.0 L 71.1(2) L 93.6(2)” L 69.9(4) L 10.32 L 
20 87.7 L 87.7(l) L 419(4)” L 82.6(2) L 83.5 L 

C3Pl 1 713 D 124(3) D 35.8(5)” D b h 
20 539 D 119(3) D, L 40.7(4)” b n 

r4/31 1 523 D, L 107(2) D, L 28.2(6)” D, L 423(1)D, L 45.0 D 
20 Q.l9+7D, L 68.2(2) D, L 33.0(4)” D, L b 103 D, L 

c5/41 1 988 D 116(3) D, L 26.3(4)” D h b 
20 0.28+4D,L 156(2) D, L 28.0(3)” D, L b 878 D, L 

Note. Data are from the KKH method [3/2] fit of Fig. 1, folded in with Gaussian random 
variations, as shown in Fig. 2, generated with standard deviations equal to experiment1 standard errars. 
The number of iterations to reach a minimum x2 is in parentheses. D denotes a defective PA. L denotes a 
PA that does not satisfy Levinson’s theorem. DSEED is the IMSL j16) random number parameter. 

a In these cases, the x2 is significantly improved using the starting values aI = bi = 1, all others = 0, 
rather than those given by the Miller method. 

’ The method fails to converge for either the Miller starting values or those of footnote a. 
’ For the LM method, 25 iterations were used in all cases, giving x2 convergence to 3 significant 

figures. 

TABLE II 

Values of x2 for Different Methods of Fitting G(x) with Reduced Random Variability in Data 

Methods 

PA DSEED Miller 

cw 3 1 
20 

w1 1 
28 

C4/3] 1 
20 

c5/41 1 
20 

520 L 
79.5 L 
18.0 
168 
0.35 + 5 D, L 
192 D, L 
0.58 + 3 D 
95.1 D 

KKH HY 

90.3(2) L 
71.0(2) L 
13.3(2) 
80.0(4) D 
81.1(3) D, L 
9.7(2) D, L 
11.1(2) D 
47.1(3) D 

87.5(3)” L 
96.4(2)” L 
12.1(l) 
16.7( 10) 
llS(2)” D, L 
7.69(10) D,L 
6.96(5)” D 
7.73(10) 

NR 

59.6(6) L 
652(S) L 
8.14(5) 

b 
b 
b 
b 

95.3(1.) D 

-11_1 

60.1 t 
66.0 L 
8.13 
27.9 

26.1 33, k 
32.0 D, L 

* 
ii 

Note. This is the same as Table I except that the standard deviations of the random variatons have 
been reduced by half. 

’ In these cases, the x2 is significantly improved using the starting values aI = by, = I; ail others = 0, 
rather than those given by the Miller method. 

’ The method fails to converge for either the Miller starting values or those of footnote a. 
’ For the LM method, 25 iterations were used in all cases, giving x2 convergence to 3 significant 

figures. 

581/78/2-16 
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criteria must be applied here that rule out most of the solutions. First, in this 
analysis it is necessary to have an on-line root finder that factors PL(x) and Q,(x) 
in order to detect defective PAS. Our root finder, using the Bairstow (i.e., 
Newton-Raphson) method, has helped identify numerous defective fits. They are 
labeled “D” in the tables. Second, a physical constraint here is that there are no 
np ‘So bound states. Consequently, by Levinson’s theorem, 6(O) = J(co) [i]. To 
check this, we have found it convenient to calculate and factor the S matrix, which 
in the s wave is 

P,(k*) + ikQ,(k’) 
S(k) = P,(k2) - ikQM(k2)’ (14) 

For Levinson’s theorem to be satisfied when there are no bound states, the number 
of poles of S(k) in the upper and lower half-planes must be equal [l, 5-J. Fits that 
do not satisfy Levinson’s theorem are labeled “L” in the tables. In Table I, there are 
no physically acceptable fits for DSEED = 1, while for DSEED = 20 there is only 
one, given by the HY method, which recovers the [3/2] order of the PA. Even with 
a smaller random variability in the data, as in Table II, the [3/2] order is recovered 
as the only physical acceptable solution; and here, again, the HY method is clearly 
the best. 

3.4. EXAMPLE 4. Gamow state (resonance) poles are calculated here for some 
central NN potentials using the methods under discussion. Since a cutoff radius R 
for the potentials is explicitly introduced in order to produce S matrix poles for our 
Yukawa-type potentials, the prescription for case (b) is applied here. As the data to 
be fitted are theoretical and of high precision, this is a class I problem. The KKH 
method is the best for this and converges after two iterations to stable locations of 
these poles. The number of such poles allows an estimate of the rank of a separable 
expansion required up to some fixed high momentum limit k,,, [ 10, 13). In recent 
work, stable, accurate results have been found for the Malfliet-Tjon spin-averaged 
np potential V (MTV) [lo, 261 and the ‘S,, Reid soft core potential [ll, 241. Here, 
the truncation range R is set, accurate phase shifts (typically on the order of 100) 
are computed using the summed Noumerov method [8,27], and x2 is minimized. 
Figure 3 shows a plot of results for the MTV potential in the present case, where we 
choose R = 5 and 6 fm. Finding Gamow poles is the most spectacular success of the 
KKH method we have seen, as it eliminates the need to solve a difficult eigenvalue 
problem if only the location of the Gamow states is needed. 

We have always been able to find approximate S matrices that, for a given kmax: 
(a) satisfy Levinson’s theorem and (b) also have well-converged Gamow poles. 
Such S matrices are good candidates for use in inverse scattering theory. In 
practice, however, we find that for every k,,, there is a maximum order of the PA 
for G(k) for which Levinson’s theorem is satisfied. When constraints (a) and (b) are 
both satisfied, the S matrices give correct poles and phase shifts only up to 
kxk,,,- lfm-‘. It is important to note that even with this limitation, the 
statistical PA methods we present here are considerably more powerful than 
classical PAS based on effective range expansions [S]. 
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FIG. 3. Poles of S matrix of the Malfliet-Tjon potential V obtained from [21/20] fit to G(k) at 
R=5fm(a)andR=6fm(b). 

3.5. EXAMPLE 5. The HY method can easily be adapted to the use of linear 
constraints on the solutions. For example, the scattering length a and effective 
range r0 can be known more accurately than the phase shifts, These are the first two 
terms in the effective range expansion of G(X), where again we have set in 
Eq. (2): 

G(x)= -~+;rox-r;Px2+-~. 

Fits to G(x) are constrained to reproduce given values of a and r. provided the 
coefficients satisfy 

a,= -1 1 
a’ 

a,-a,b,=-r,. 
2 

These equations can be used as constraints on a0 and ~1’~ in the first ha 
iteration, when a fixed value of b, is assumed. Consider our [3/2] solution 
quoted coefficients, again. It gives a = -23.673995 fm and rO= 2.508 
while for D6EED = 1 the [3/2] fit of Table II gives a = - 23.592961 fm an 
r0 - 2.4787987 fm, with x2 = 12.1. Our lit that is constrained to the original (exact) 
values of a and r0 gives an almost equally good fit, with x2 = 12.3. 

4. CONCLUSION 

There is a spectrum of problems ranging between class I and class II in which 
superior convergence is alternatively obtained by the Miller, KK Y 
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methods. Although the derivative matrix &Iii is easily calculated, this amounts to 
extra effort required with the use of the Newton-Raphson method, and as we see, 
the NR method generally displays inferior convergence or even nonconvergence. 
The LM method, easy to use with available programs, also fails or converges slowly 
in many cases. The existence of noise in the data strongly favors the use of the HY 
method. With noisy data, converged HY results are sometimes slightly improved 
with further NR or LM iteration. We recommend all five statistical Padi: methods 
be programmed together as options whenever rational function fits of experimental 
scattering data are sought. 
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